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Relation between the probability density and other properties of a stationary random process
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We consider the Pope-Ching differential equation@Phys. Fluids A5, 1529~1993!# connecting the probability
densitypx(x) of a stationary, homogeneous stochastic processx(t) and the conditional moments of its squared
velocity and acceleration. We show that the solution of the Pope-Ching equation can be expressed as
n(x)^uv(x)u21&, wheren(x) is the mean number of crossings of thex level per unit time and̂uv(x)u21& is the
mean inverse velocity of crossing. This result shows that the probability density atx is fully determined by a
one-point measurement of crossing velocities, and does not imply knowledge of thex(t) behavior outside of
the infinitesimally narrow window nearx. @S1063-651X~99!06709-4#

PACS number~s!: 05.40.2a, 47.27.Ak
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The relationship between the probability density functio
~PDF! and the conditional means of a stationary random p
cess has recently attracted much attention, mostly in con
tion with the Pope-Ching equation~PCE!, Refs. @1,2#, con-
necting the PDFp(x) of the random process~RP! x(t) with
the conditional means of its acceleration and squared ve
ity. Thus, for a process with zero mean one has

2
]

]x
~^Ẍux&p!1

]2

]x2
~^Ẋ2ux&p!50, ~1!

where^ & denotes the conditional ensemble or the time av
age. The ordinary differential equation, Eq.~1!, has a solu-
tion

p~x!5
C

^Ẋ2ux&
expS E

0

x ^Ẍux&

^Ẋ2ux&
dxD , ~2!

where the numerical constantC is to be determined from the
normalization conditions. The result, Eq.~1!, was formulated
in connection with probability density distributions of pa
sive scalars advected by turbulent flow and found many
plications in the experimental and theoretical work on su
advection@3–16#. On the other hand, the PCE is not of st
tistical, but of dynamical nature~it is related to the Liouville
equation! and is thus an exact result which applies not o
to random processes but also to any stationary, homogen
process like complex oscillatory phenomena or dynam
chaos. In what follows we discuss the overall behavior of
solution and its relation to the other mean values charac
izing the process.

Let us first review the derivation of the PCE and discu
some simple examples. The PDF ofX, px(x), is obtained as
an ensemble average~e.g., over the initial conditions! of the
realizations for each of which

p~x,t !5d„X~ t !2x…. ~3!
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The coarse-grained probability is then given byp(x)
5^p(x,t)&. Differentiating Eq.~3! with respect to time one
gets

]p

dt
52Ẋ

]p

]x
52

]

]x
~Ẋp! ~4!

sinceX is not dependent onx. Note that Eq.~4! is a Liouville
equation, and the derivation here is parallel to one given
Ref. @17#. Applying the same procedure for the second tim
we get

]2p

dt2
52

]

]x

]

]t
~Ẋp!5

]

]x
~Ẍp!1

]

]x F Ẋ
]

]x
~Ẋp!G

52
]

]x
~Ẍp!1

]2

]x2
~Ẋ2p!, ~5!

which is, of course, the same exact equation as the Liouv
equation. The PCE follows after ensemble averaging, un
which, for a stationary process, the time derivative vanish
and the conditional means appear instead of the insta
neous velocity and acceleration, so that Eq.~5! reduces to
Eq. ~1!.

Let us apply Eqs.~1! and ~2! to a simple dynamical pro-
cess, for example, to a harmonic oscillation,X(t,w)
5sin(vt1w), for which ^Ẍux&5a(x)52v2x and ^Ẋ2ux&
5v2(x)5v2(12x2). In this case no averaging over the in
tial phasew is necessary. The solution of the PCE then rea
p(x)5C/(v2A12x2), which after normalization gives u
the known result,px(x)51/(pA12x2). This result corre-
sponds topx(x)52/Tuv(x)u, wherev(x) is the instantaneous
velocity atx, which leads to another interpretation ofpx(x):
this probability is proportional to the amount of time spent
the vicinity of x. As we proceed to show,p(x) is always
given by some special mean value of inverse velocity
point x. The more complex dynamical examples@e.g.,X(t)
5cost1cos 2t, where the phase portrait of the process co
sists forx,0 of two branches crossing the lineX(t)5x with
different velocities# shed light on the interpretation of cond
tional means. One can prove that the correct definition
3402 © 1999 The American Physical Society
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cludes weighing the values of squared velocity and of ac
eration on each branch with the corresponding inve
velocity values, i.e., with the times spent in the vicinity
the x-line crossing.

Let us turn to a general situation. The definitio
^F(x,t)p(x,t)&5^F(x,t)ux&px(x) is based on the Bayesia
formula

p~x,t !5p~ tux!px~x!. ~6!

Herep(x,t) is a joint probability distribution of the values o
t and x of the measurement time and position@to make it
clear imagine a trajectory of the process on the (t,x) plane;
the probability to pick up a measurement result (t,x) corre-
sponds to ad ridge following a line given by the equation o
motion#. Considering our measurement as lasting for
time T we can define this asp(x,t)5(1/T)d„X(t)2x…,
which is an explicit function ofx and an implicit function of
t. On the other hand, one can consider another Bayesian
pression,p(x,t)5p(xut)pt(t), with the time-sampling prob-
ability pt(t)51/T and the conditional probabilityp(xut)
5d„X(t)2t…. To getpx(x) from Eq. ~6! we need to expres
p(x,t) andp(tux) asexplicit functions of tand implicit func-
tions ofx, i.e., to change variables in the corresponding pr
ability distributions. Doing this one is led to the followin
expressions: Forp(x,t) one gets

p~x,t !5(
i

1

uv i~x!u
d„t2Ti~x!…,

where i numbers the roots of the equationX(t)5x on the
real axis between 0 andT, i.e., the x-line crossings. The
conditional densityp(tux) is given by

p~ tux!5S (
i

1

uv i~x!u D 21

(
i

1

uv i~x!u
d„t2Ti~x!….

This means that for a dynamical process the value of^v2ux&
is not equal tô v2(x)& but is given by

^v2ux&5S (
i

1

uv i~x!u D 21

(
i

uv i~x!u.

As a parallel,

^aux&5S (
i

1

uv i~x!u D 21

(
i

a~x!

uv i~x!u

gives us the corresponding acceleration. The probability
tribution px(x) then reads

px~x!5
1

T (
i

1

uv i~x!u
.

This probability density satisfies the Pope-Ching equati
which can be checked by substitution:
l-
e

e

x-

-

s-

,

2S (
i

1

uv i~x!u D 21

(
i

a~x!

uv i~x!u S 1

T (
i

1

uv i~x!u D
1

d

dx S (
i

1

uv i~x!u D 21

(
i

uv i~x!uS 1

T (
i

1

uv i~x!u D 50

since for each branch or realizationi one hasduv i(x)u/dx
5a(x)/uv i(x)u, since @dv(x)/dx#dx5a(x)(dt/dx)dx
5@a(x)/v(x)#dx. The averaging over the ensemble of re
izations gives

px~x!5K 1

T (
i

1

uv i~x!u L ,

which reduces in the limit ofT→` and for stationary pro-
cesses to

px~x!5n~x!K 1

uv~x!u L . ~7!

Heren(x) is the mean number ofx-level crossings per uni
time and the average is taken over the values of the velo
at crossing. In this average each crossing~branch! is counted
with the same weight.

At first glance, Eq.~7! seems to make no sense, since,
example, for a Gaussian processpv(v) has a maximum at
v50 and thus delivers a divergence ofpx(x). This interpre-
tation is wrong, sincev(x) is a velocity measuredprovided
x(t) has just crossed an observation line. Note that a cros
cannot take place with zero velocity.~This last statement is
essentially the content of Bulinskaya’s theorem, see p. 76
Ref. @18#.!

Imagine we have a long run of data points giving thex(t)
values with a high sampling frequencyt21. The velocity
v(x) is measured if the processx(t) has anx-level crossing
in the interval t,t1t. Let p(v,x) be the joint probability
density of the distribution of (v,x). Then, fort small, x(t)
obeys the inequalityx2vt,x(t),x if x(t) crosses thex
line from below. The probability that this happens~i.e., the
probability thatx falls into the interval considered! is

E
x2vt

x

p~v,x!dx5uvup~v,x!. ~8!

The same expression is obtained when considering
x-level crossing from above. This leads to the conclusion t
the velocity distribution at the crossing is proportional
p„v(x)…}uvup(v,x). Normalizing this we get

p„v~x!…}uvup~v,x!Y E
2`

`

uvup~v,x!dv. ~9!

On the other hand, the denominator in Eq.~9! is just the
expression defining the density ofx-level crossings, which,
according to Rice’s formula, Refs.@18,19#, is given by
n(x)5*2`

` uvup(v,x)dv, see also Ref.@20#. Thus the mean
inverse velocity at the crossing multiplied by the mean cro
ing density is
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n~x!^uv~x!u21&}E
2`

` 1

uv~x!u
uv~x!up~v,x!dv

5E
2`

`

p~v,x!dv[px~x!, ~10!

which delivers another, purely statistical way of deriving E
~7!.

Let us discuss in more detail the difference between
two types of averages involved in the PCE and in Eq.~7!.
Let us fix the time-sampling windowt. The values of veloci-
ties and accelerations are then determined from the
points xi by taking v i5t21(xi 112xi) and ai5t22(xi 11
22xi1xi 21). The procedure leading to conditional mea
corresponds to the averaging over the set of data for wh
xiP@x2D/2,x1D/2#, with D being a width of the
x-sampling window. If many subsequent points occur with
the window, all of them count. On the other hand, the cro
ing mean does not suppose any observation window an
defined by averaging over the set of data for whichxi,x and
xi 11.x, i.e., for the pairs ofx points that definitely corre-
spond to crossing thex level.

Equation~7! has a very interesting statistical implicatio
it means that in order to obtain the value of the probabi
tt

tt
.

e

ta

h

-
is

density of a stationary, homogeneous random processx,
one does not need to perform the continuous measureme
x or to keep the sampled track of the process. The one-p
probability density is a truly local characteristic of the pr
cess and is fully determined by a one-point measuremen
crossing velocities. It does not imply the knowledge of t
processes behavior outside of the infinitesimally narrow w
dow nearx. This is of extreme interest when we really a
interested in the behavior of RP in some narrow domain ox.
Note that both the standard sampling procedure~building a
frequency histogram of the process! and also obtaining the
probability density with the help of PCE through the eva
ation of the conditional mean values of squared velocity a
of acceleration need a full range of knowledge about
process, since otherwise the normalization constant ca
be obtained. On the other hand, Eq.~7! corresponds to a very
simple time averaging, in which the overall sum of inver
measured crossing velocities during the observation timeT is
divided byT.
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