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Relation between the probability density and other properties of a stationary random process
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We consider the Pope-Ching differential equafiBhys. Fluids A5, 1529(1993 ] connecting the probability
densityp,(x) of a stationary, homogeneous stochastic progégsand the conditional moments of its squared
velocity and acceleration. We show that the solution of the Pope-Ching equation can be expressed as
n(x){|v(x)| ~1), wheren(x) is the mean number of crossings of thkevel per unit time and|v(x)| 1) is the
mean inverse velocity of crossing. This result shows that the probability densitis dtilly determined by a
one-point measurement of crossing velocities, and does not imply knowledge xfftjhieehavior outside of
the infinitesimally narrow window neat [S1063-651X99)06709-4

PACS numbd(s): 05.40—a, 47.27.Ak

The relationship between the probability density functionsThe coarse-grained probability is then given Ipfx)
(PDB and the conditional means of a stationary random pro={p(x,t)). Differentiating Eq.(3) with respect to time one
cess has recently attracted much attention, mostly in connegets
tion with the Pope-Ching equatid?CE), Refs.[1,2], con-
necting the PDFp(x) of the random proces®RP) x(t) with Jp . Ip -
the conditional means of its acceleration and squared veloc- dat - Tox 5(Xp) (4)
ity. Thus, for a process with zero mean one has

sinceX is not dependent ox Note that Eq(4) is a Liouville

9 2 . equation, and the derivation here is parallel to one given in
— a—((f(|x>p)+ —2(<X2|x)p):0, (1) Ref.[17]. Applying the same procedure for the second time
X X we get
where( ) denotes the conditional ensemble or the time aver- a%p J a . J . al. o .
filgre]. The ordinary differential equation, Ed), has a solu- F: T X E(Xp)z 5(Xp)+ X Xa(XD)
: ? s+ 5p) ©
x(X|x == (Ap)+ —(X"P),
p(X)= ———ex f <. ) dx|, 2 X Ix?
(X2[x) 0 (X?x)

which is, of course, the same exact equation as the Liouville

where the numerical consta@tis to be determined from the €quation. The PCE follows after ensemble averaging, under
normalization conditions. The result, Ed), was formulated which, for a stationary process, the time derivative vanishes,
in connection with probability density distributions of pas- and the conditional means appear instead of the instanta-
sive scalars advected by turbulent flow and found many ap2eous velocity and acceleration, so that Es). reduces to
plications in the experimental and theoretical work on suchEd- (1.
advection[3—16]. On the other hand, the PCE is not of sta-  Let us apply Egs(1) and(2) to a simple dynamical pro-
tistical, but of dynamical naturét is related to the Liouville ~cess, for example, to a harmonic oscillatioX(t,¢)
equation and is thus an exact result which applies not only=sin(wt+¢), for which (X|x)=a(x)=—»?x and (X?|x)
to random processes but also to any stationary, homogeneous/?(x) = w?(1—x2). In this case no averaging over the ini-
process like complex oscillatory phenomena or dynamicatial phasep is necessary. The solution of the PCE then reads
chaos. In what follows we discuss the overall behavior of thQ)(x):C/(wzw/l—xzx which after normalization gives us
sqlution and its relation to the other mean values charactethe known result,p,(x)=1/(71—x?). This result corre-
izing the process. sponds tq,(x) = 2/T|v(x)|, wherev(x) is the instantaneous
Let us first review the derivation of the PCE and diSCUSS/e|ocity atx, which leads to another interpretation m{(x):
some simple examples. The PDFXfp,(X), is obtained as  this probability is proportional to the amount of time spent in
an ensemble averade.g., over the initial ConditiOIjSOf the the V|C|n|ty of x. As we proceed to Shov\p(x) is a|Ways

realizations for each of which given by some special mean value of inverse velocity at
point x. The more complex dynamical examplesg., X(t)
p(Xx,t)= (X(t) —x). (3 =cost+cos 2, where the phase portrait of the process con-

sists forx<<0 of two branches crossing the lixgt) = x with
different velocitieg shed light on the interpretation of condi-
*Permanent address. tional means. One can prove that the correct definition in-
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cludes weighing the values of squared velocity and of accel- 1 \71 ax) (1 1
eration on each branch with the corresponding inverse—( s |v-(X)|) - |V_(X)|($Z |v-(x)|)
velocity values, i.e., with the times spent in the vicinity of ! : ! : ' !
the x-line crossing. d 1 \71 1 1

Let us turn to a general situation. The definition + ax 2 v, (X)]| z |Vi(X)|(f 2 m) =0
(F(x,t)p(x,t))=(F(x,t)|X)py(x) is based on the Bayesian b ' b
formula

since for each branch or realizatiorone hasd|v;(x)|/dx
_ =a(x)/|v;(x)|, since [dv(x)/dx]dx=a(x)(dt/dx)dx
P(X,1) =P(t[X)P<(X). ©) =[a(x)/v(x)]dx. The averaging over the ensemble of real-
izations gives
Herep(x,t) is a joint probability distribution of the values of
t and x of the measurement time and positifio make it 1 1
clear imagine a trajectory of the process on the)( plane; px(x)=<T E —>
the probability to pick up a measurement restik) corre- T Vi)l
sponds to & ridge following a line given by the equation of ) ) o )
motion]. Considering our measurement as lasting for thevhich reduces in the limit off —< and for stationary pro-
time T we can define this ap(x,t)=(1/T)s(X(t)—x), Cessesto
which is an explicit function ok and an implicit function of
t. On the other hand, one can consider another Bayesian ex- 1
pressionp(x,t) = p(x|t)p;(t), with the time-sampling prob- px(x)=n(x)<—|v(x)|>. 0
ability p(t)=21/T and the conditional probabilityp(x|t)
= o(X(t) —t). To getpy(x) from Eq.(6) we need to express Heren(x) is the mean number of-level crossings per unit
p(x,t) andp(t|x) asexplicit functions of and implicit func-  time and the average is taken over the values of the velocity
tions ofx, i.e., to change variables in the corresponding probst crossing. In this average each crosgimgnch is counted
ability distributions. Doing this one is led to the following with the same weight.
expressions: Fop(x,t) one gets At first glance, Eq(7) seems to make no sense, since, for
example, for a Gaussian procesgv) has a maximum at
1 v=0 and thus delivers a divergencemf(x). This interpre-
p(x,t)=2i m5(t_Ti(X))v tation is wrong, since/(x) is a velocity measuregrovided
' X(t) has just crossed an observation line. Note that a crossing
cannot take place with zero velocityThis last statement is

wherei_numbers the roots .Of the eqqatid{t)=?< on the essentially the content of Bulinskaya’'s theorem, see p. 76 of
real axis between O and, i.e., thex-line crossings. The Rt (18]

conditional densityp(t|x) is given by Imagine we have a long run of data points giving %(e)
. values with a high sampling frequeney 1. The velocity
1 \- 1 v(x) is measured if the proces¢t) has anx-level crossing
p(t|x)=(§i: |Vi(X)|) Z [vi(x)] S(t=Ti(x)). in the intervalt,t+ 7. Let p(v,x) be the joint probability

density of the distribution of\,x). Then, forr small, x(t)
obeys the inequalitk—vr<x(t)<x if x(t) crosses the
line from below. The probability that this happefi®., the
probability thatx falls into the interval considergds

This means that for a dynamical process the valugvéfix)
is not equal ta{v2(x)) but is given by

-1
Z Ivi(x)]. JX p(v,x)dx=|v|p(V,x). 8

1
2
ve|x)= —
w0~ 2 .
As a parallel, The same expression is obtained when considering the
x-level crossing from above. This leads to the conclusion that
the velocity distribution at the crossing is proportional to
p(v(x))=|v|p(v,x). Normalizing this we get

=3 ] S

™ Vi) ™ vi(x)|
gives us the corresponding acceleration. The probability dis- p(v(x))o<|v|p(v,x)/ j [v|p(v,x)dv. 9
tribution p,(x) then reads o
1 1 On the other hand, the denominator in Ef) is just the
Py(X)= = > Vol expression defining the density gflevel crossings, which,
Vi

[ according to Rice’s formula, Refd18,19, is given by
n(x)=/7_|v|p(v,x)dv, see also Ref.20]. Thus the mean
This probability density satisfies the Pope-Ching equationinverse velocity at the crossing multiplied by the mean cross-
which can be checked by substitution: ing density is
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o 1 density of a stationary, homogeneous random process at
n(x)(lv(x)l‘l)ocf 7 Iv(X)|p(v,x)dv one does not need to perform the continuous measurement of
—o|V(X)] .
x or to keep the sampled track of the process. The one-point
% probability density is a truly local characteristic of the pro-
= ﬁxp(v,x)dvsz(x), (100 cess and is fully determined by a one-point measurement of
crossing velocities. It does not imply the knowledge of the
which delivers another, purely statistical way of deriving Eq.processes behavior outside of the infinitesimally narrow win-
(7). dow nearx. This is of extreme interest when we really are
Let us discuss in more detail the difference between thénterested in the behavior of RP in some narrow domaix of
two types of averages involved in the PCE and in Ef).  Note that both the standard sampling procedimslding a
Let us fix the time-sampling window. The values of veloci-  frequency histogram of the procgsand also obtaining the
ties and accelerations are then determined from the daferobability density with the help of PCE through the evalu-
points x; by taking vi=7"'(xj.1—%) and a=7"%(X;+1  ation of the conditional mean values of squared velocity and
—2x;+X;_1). The procedure leading to conditional meanspf acceleration need a full range of knowledge about the
corresponds to the averaging over the set of data for whicBrocess, since otherwise the normalization constant cannot
Xje[x—Al2x+A/2], with A being a width of the pe ghtained. On the other hand, Eg). corresponds to a very

x-sampling window. If many subsequent points occur withingimpje time averaging, in which the overall sum of inverse

the window, all of them count. On the other hand, the crosspaagred crossing velocities during the observation Tirise

ing mean does not suppose any observation window and Bivided by T.

defined by averaging over the set of data for which x and

Xj+1>X, i.e., for the pairs ofk points that definitely corre- The hospitality of LMHD at the University Paris VI and

spond to crossing the level. the financial support by CNRS are gratefully acknowledged.
Equation(7) has a very interesting statistical implication: The author is indebted to Professor J.E. Wesfreid for bring-

it means that in order to obtain the value of the probabilitying the problem to his attention.
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